
Journal of Sound and <ibration (1999) 228(3), 543}558
Article No. jsvi.1999.2427, available online at http://www.idealibrary.com on
DYNAMIC MODELLING AND STABILITY ANALYSIS
OF AXIALLY OSCILLATING CANTILEVER BEAMS

S. H. HYUN AND H. H. YOO

Department of Mechanical Engineering, Hanyang ;niversity,
Sungdong-Gu Haengdang-Dong 17, Seoul, 133-791 Korea

(Received 4 February 1999, and in ,nal form 21 May 1999)

Dynamic stability of an axially oscillating cantilever beam is investigated in this
paper. Equations of motion for the axially oscillating beam are derived and
transformed into dimensionless forms. The equations include harmonically
oscillating parameters which are related to the motion-induced sti!ness variation.
Stability diagrams of the "rst and the second order approximate solutions are
obtained by using the multiple scale perturbation method. The stability diagrams
show that there exist signi"cant di!erence between the "rst and the second order
approximate solutions. It is also found that relatively large unstable regions exist
around the "rst bending natural frequency, twice the "rst bending natural
frequency, and twice the second being natural frequency. The validity of the
stability diagram is veri"ed by direct numerical integrations of the equations of
motion of the system.
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1. INTRODUCTION

Needles of sewing machines are typical good examples of cantilever beams
undergoing axially oscillating motions. Needles are usually #exible since their
thickness is extremely small compared to their length. The higher the sewing
quality is needed, the thinner the thickness of the needle becomes. Flexible needles
may deform large considerably during the operation of sewing machines. This
might cause the degradation of sewing safety as well as sewing quality. Particularly,
for high-speed sewing to increase productivity, the stability of a sewing machine
needle should always be guaranteed.

When cantilever beams undergo rigid body motion, their lateral bending
sti!nesses often change. Typical examples are rotating beams (such as turbine and
turbomachine blades). Their bending sti!nesses increase as the rotating angular
speed increases. Di!erent from the rotational motion, the axially oscillating rigid
body motion results in the oscillating variation of bending sti!ness. When
a cantilever beam accelerates toward its free end, it is compressed and its bending
sti!ness decreases. On the contrary, the bending sti!ness increases when the beam
accelerates toward its "xed end. This variation of bending sti!ness should be
identi"ed properly to accurately estimate the dynamic stability of an axially
oscillating cantilever beam.
0022-460X/99/480543#16 $30.00/0 ( 1999 Academic Press
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The study of cantilever beams undergoing rigid body motion has been mostly
restricted to the case of undergoing rotational motion. When a cantilever beam
undergoes rotational motion perpendicular to its axial axis, its natural frequencies
as well as bending sti!ness increase due to the centrifugal inertia force. References
[1}4] are just some of many related papers. In references [5, 6], a dynamic
modelling method for cantilever beams undergoing general rigid body motion is
suggested, but its examples are restricted to rotational motion. Thus, it can be said
that only rotational rigid body motion has been studied by many researchers but
that translational rigid body motion such as axially oscillating motion, which is
treated in this paper, has been rarely studied so far.

Systems that contain time-dependent parameters in their governing equations of
motion are often called parametrically excited systems. The study of the
parameterically excited system was introduced early in reference [7], and the
fundamental mathematical bases were established in references [8, 9]. Since then,
a large number of papers related to the topic have been published. Among them,
there exist several papers focusing on methods for analyzing parametrically excited
systems. In references [10}12], the Hill's method of in"nite determinants was
investigated. This method has been proved to be relatively ine$cient when applied
to systems having multiple degrees of freedom. Furthermore, it is very di$cult to
obtain the combinatory resonance regions by this method. In references [13}16],
the Floquet's method was studied. This method is the most general one and the
combinatory resonance regions as well as the principal resonance regions could be
obtained with the method. However, a large amount of computational e!ort is
required for this method. In reference [17}19], the perturbation method was
studied. This method is limited to cases of small parametric excitation. By this
method, the combinatory resonance regions as well as the principal resonance
regions could be obtained. Furthermore, the analytical equations of the transition
curves which divide the unstable and stable regions can also be obtained.

In addition to the subject of analyzing methods for parametrically excited
systems, several structural dynamics problems have been studied. Stationary
structures undertaking harmonic force (see, references [20, 21]), a #ying structure
undertaking pulsating thrusts (see, reference [22]), structures undergoing rotational
motion (see, references [23}25]) and a mechanism having a #exible link (see,
reference [26]) were some of the stability analysis problems of structures. The
stability analysis problem of a cantilever beam undergoing axially oscillating
motion, however, has not been solved in the literature. Furthermore, in most of the
previous studies (for structural dynamics problems), only the "rst order
approximate solutions were obtained. The signi"cance of the second order solution
has been rarely highlighted in structural dynamics problems.

In this paper, equations of motion for cantilever beams undergoing axially
oscillating motion are derived. These equations are found to be completely di!erent
from the ones which govern the stationary structures undertaking harmonic force
or structures undergoing rotational motion. The derived equations are then
transformed into dimensionless forms. Two dimensionless parameters are identi"ed
from the dimensionless equations: dimensionless oscillating frequency and
dimensionless oscillating speed. Once these two parameters are given, the
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characteristics of the system can be determined. In order to investigate the stability
of the system, the method of multiple scales (see reference [27]) is employed in this
study. The stability diagrams of the "rst and the second order approximate
solutions are obtained with the method. It is found that there exists signi"cant
di!erences between the "rst order approximate solution and the second order
solution. The integrity of the stability diagram is "nally con"rmed by the direct
numerical integration method. The stability diagram obtained in this study can be
used for the design of axially oscillating cantilever-type structures such as needles in
sewing machines.

2. EQUATIONS OF MOTION

In this section, the equations governing the planar motion of an axially
oscillating cantilever beam are derived. The modelling method introduced in
reference [6] along with Kane's method (see reference [28]) is employed for the
derivation of equations of motion. The method was proved to accurately capture
the motion-induced sti!ness variation.

Figure 1 shows a cantilever beam which is "xed at an oscillating rigid base
(denoted as A). When the beam is deformed due to the oscillating motion, the
generic point (denoted as P

o
) of the beam moves to a new position (denoted as P). In

the "gure, a;
1

and a;
2

represent unit vectors which are attached to the rigid base A.
x is the length from the point O to the point P

o
, u is the elastic deformation vector,

and s is the stretch of the beam at point P. In conventional modelling methods, u
1

which is the a;
1

measure number of u is employed instead of s. The use of the stretch
variable s is one the key feature of the modelling method introduced in this paper.

To derive the ordinary di!erential equations of motion of the beam, s and u
2

are
approximated as follows:

s"
k
+
k/1

/
1k

(x)q
k
(t), (1)

u
2
"

k
+
k/1

/
2k

(x)q
k
(t), (2)
Figure 1. Con"guration of axially oscillating cantilever beam.
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where /
1k

(x) and /
2k

(x) are stretching and bending mode functions, q
k
's are

generalized co-ordinates, and k is the total number of generalized co-ordinates. It
seems that s and u

2
are involved with the same generalized co-ordinates. Actually,

they do not share the same generalized co-ordinates. For instance, /
1k

is not zero
only if k)k

1
, and /

2k
is not zero only if k

1
)k)k

1
#k

2
. In other words, k

1
and

k
2

denote the actual number of co-ordinates for s and u
2

respectively. Thus, k is the
sum of k

1
and k

2
.

Since rotational motion is not involved in the system of concern, the velocity of
the generic point P can be easily obtained by using the following equation:

vP"vO#vP@A, (3)

where vO is the velocity of the "xed point O on the rigid base A, and vP@A is the
velocity of the point P relative to the rigid base A. In component form, they can be
expressed as

vO"v
1
a;
1
, (4)

vP@A"uR
1
a;
1
#uR

2
a;
2
, (5)

where dots over symbols denote time derivatives. Thus,

vP"(v
1
#uR

1
)a;

1
#uR

2
a;
2
. (6)

The acceleration of the generic point, which is denoted by aP, can be obtained by
di!erentiating equation (6) with respect to time:

aP"(vR
1
#uK

1
)a;

1
#uK

2
a;
2
, (7)

u
1

must be expressed with respect to s and u
2
, that are approximated in equations

(1) and (2). The following geometric relation (see reference [29]) is used for the
purpose:

x#s"P
x

0

J(1#u
1,p)2#(u

2,p)2dp, (8)

where u
1,p and u

2,p denote partial di!erentiations of u
1

and u
2

with respect to
a dummy variable p respectively. Using Taylor's series expansion, equation (8) can
be expressed as follows:

s"u
1
#

1
2 P

x

0

(u
2,p)2dp#H.D.T., (9)

where H.D.T. denotes the higher degree terms of the expansion. Since the linear
equations of motions are to be derived in the modelling method presented in this
paper, the higher degree terms can be truncated without a!ecting the integrity of
the modelling method. Neglecting the higher degree terms and di!erentiating
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equation (9) with respect to time, the following relation can be obtained:

uR
1
"sR!P

x

0

(u
2,p) (uR 2,p) dp. (10)

From equation (10) along with equation (6), the partial derivatives of vP with
respect to qR

k
are obtained as follows:

LvP
LqR

k

"(/
1k
!/*

1k
)a;

1
#/

2k
a;
2
, (11)

where

/*
1k
"

k
+

m/1
CP

x

0

/
2k,p/2m,p dpDq

m
. (12)

Now, the generalized inertia forces (see reference [28]) can be obtained from the
following equation:

F*
k
"!P

L

0
AoaP )

LvP
LqR

k
Bdx, (13)

where ¸ denotes the length of the beam, and o denotes mass per unit length of the
beam.

By neglecting all other e!ects (such as shear and torsion) except stretching and
bending, the strain energy of a beam can be expressed as follows:

;"

1
2 P

L

0

EA(s
,x

)2dx#
1
2 P

L

0

EI(u
2,xx

)2 dx, (14)

where E, A, and I denote Young's modulus, cross-sectional area, and the second
area moment of inertia respectively. In the system of concern, only axially
oscillating motion is prescribed and no external force is applied to the beam. Thus,
the generalized active forces (see reference [28]) can be obtained from the following
equation:

F
k
"!

L;
Lq

k

. (15)

Finally, by linearizing the generalized inertia and active forces obtained in
equations (13) and (15), the linearized equations of motion of axially oscillating
cantilever beams are obtained as follows:

k
+

m/1

[M11
km

qK
m
#KS
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m
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k
, (16)
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m
]"0, (17)
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where

Maa
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L
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/

am
dx, (18)
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L

0
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1m,x

dx, (19)
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dx, (20)
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"P

L

0

o (¸!x)/
2k,x
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dx, (21)

P
k
"!vR

1P
L

0

o/
1k

dx. (22)

equations (16) and (17) represent the governing equations for stretching motion and
bending motion respectively. Since equations (16) and (17) are not coupled, they can
be solved independently. The stability of the stretching motion can be simply
guaranteed unless the frequency of the oscillating motion matches with one of the
stretching natural frequencies, which are usually very high compared to the
bending natural frequencies. For slender beams, the lowest stretching natural
frequency is much larger than a few lowest bending natural frequencies. So the
instability of the bending motion usually occurs before that of the stretching
motion occurs. Thus, the stability of bending motion of the axially oscillating beam
which is governed by equation (17) will be studied. Di!erent from the stretching
motion, the stability of the bending motion cannot be checked so easily. Since the
sti!ness terms in equation (17) vary as functions of time, the system of concern is an
non-autonomous system. Such a system can be solved by using a stability analysis
procedure which will be exhibited in the next section.

3. STABILITY ANALYSIS

For the axially oscillating motion, the axial speed v
1

can be assumed as follows:

v
1
"v(1!cosut), (23)

where v denotes the average speed of the motion. Di!erentiating equation (23) with
respect to time, the following relation can be obtained:

vR
1
"vu sinut, (24)

where u denotes the frequency of the oscillating motion. Substituting equation (24)
into equation (17), the following equations are obtained:

k
+

m/1

[M22
km

qK
m
#(KB

km
!vu sinutKG

km
q
m
]"0. (25)
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Equation (25) represents a typical parametrically excited system since the sti!ness
matrix of the equation varies with time.

To obtain more general results and conclusion, equation (25) needs to be
transformed into a dimensionless form. For the purpose of the transformation, the
following dimensionless variables need to be introduced:

m"
x
¸

, q"
t
¹

, 0
k
"

q
k
¸

(26}28)

where

¹"S
o¸4

EI
. (29)

Using the variables introduced in equations (26)}(28), equation (25) can be
written as follows:

k
+

m/1

[M
km

0G
m
#(KM B

km
!jc sin cqK

km
)0

m
]"0, (30)

where a dot over a symbol now denotes the di!erentiation of the symbol with
respect to the dimensionless time q, and

M
km
"P

1

0

t
k
(m)t

m
(m) dm, (31)

KM B
km
"P

1

0

t
k,mmtm,mmdm, (32)

K
km
"P

1

0

(1!m)t
k,mtm,mdm, (33)

j"
v¹
¸

, c"u¹. (34, 35)

The value of the function t
k
(m) in equation (31) is equal to that of the mode

function /
2k

(x). The eigenfunctions of stationary cantilever beams (without
oscillating motion) are used for the mode functions. Then, the mass matrix which
has the components of equation (31) becomes an identity matrix, and the sti!ness
matrix which has the components of equation (32) becomes a diagonal matrix.
Therefore, the equations of motion in equation (30) can be rewritten as follows:

0G
k
#u2

k
0
k
!e sin cq

k
+

m/1

K
km

0
m
"0 (k"1, 2,2, k), (36)

where
e"jc (37)
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and u
k

denotes the dimensionless natural frequencies of the stationary cantilever
beam.

When e in equation (36) remains small, the method of multiple scales can be
applied to obtain the approximate solutions of equation (36). Transition curves,
which divide the whole region into stable and unstable regions, can be obtained
from the conditions to eliminate secular terms of the approximate solutions. The
procedure for "nding the transition curves (and drawing stability diagram) is
described detailedly in reference [19], and so will not be fully repeated in this paper.
Instead, the characteristic results will be summarized by considering the distinctive
feature of the system of concern (axially oscillating beams) of this paper.

It is su$cient to consider up to the second order expansions in the method of
multiple scales when transition curves are obtained. Therefore, equations for the
"rst and second order transition curves will be described. The "rst order transition
curves exist when c is near u

p
#u

q
, and the equation for the curves can be

described as follows:
c"u

p
#u

q
$eJK

pq
, (38)

where

K
pq
"

K
pq

K
qp

4u
p
u

q

. (39)

In general cases, the "rst order transition curves may exist when c is near
u

p
!u

q
. However, such is not true since K

pq
is symmetric for axially oscillating

beams. Therefore, the "rst order transition curves only exist when c is near u
p
#u

q
.

There are several cases for the second order transition curves. The "rst case is
when u

p
#u

q
is near c (this is the only case for the "rst order transition curves).

u
p
#u

q
is, however, away from 2c. In this case, the equation for the second order

transition curves is written as follows:
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The second term of equation (41) represents the summation (from m"1 to k)
except m"q, and that of equation (42) represents the summation except m"p.

The second case is when u
p
#u

q
is near 2c but away from c. In this case, the

equation for the second order transition curves is written as follows:

c"1
2
(u

p
#u

q
)#e2M1

2
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p
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)$Jk

pq
k
qp

N (43)
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where
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where c's inside s
p

and k
pq

should be replaced 1
2
(u

p
#u

q
). In general cases, the

second order transition curves may also exist around 2c+u
p
!u

q
. However, such

is not true for the system of concern (axially oscillating beams).
The third case is when u

p
#u

q
is near c and u

s
#u

q
is near 2c. In this case,

unlike the explicit form of above cases, transition curves can be obtained as follows.
To express the nearness of c to u

p
#u

q
and to (u

s
#u

q
)/2, the detuning parameters

are de"ned by
c"u

p
#u

q
#p

1
e, (46)

c"1
2
(u

s
#u

q
)#1

2
p
2
e2. (47)

Then, transition curves are determined by the condition that j has two equal real
roots in the following equation:
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1
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3
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3
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4
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5
"e2k
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From the condition of two equal real roots, p
1
and p

2
can be determined, and the

similar procedure is given in reference [19]. However, as will be shown in the next
section, this third case does not occur in our system of concern.

4. NUMERICAL RESULTS

Figures 2 and 3 show the stability diagram of the axially oscillating beams in
which stable regions and unstable hatched regions are separated by transition
curves. The maximum axial speed j and the oscillating frequency c are the two
dimensionless parameters to determine the stability of the system. Figures 2 and
3 exhibit the results of applying the multiple scale method up to the "rst and second
order respectively. Transition curves of the "rst order shown in Figure 2 originate
from c"u

p
#u

q
, and those of the second order shown in Figure 3 originate from

c"(u
p
#u

q
)/2 as well as c"u

p
#u

q
. From these "gures, it can be easily



Figure 2. Stability diagram of axially oscillating beams considering up to the "rst order.

Figure 3. Stability diagram of axially oscillating beams considering up to the second order.
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observed that the unstable regions which originate from c"(u
p
#u

q
)/2 are

relatively narrower than those originating from c"u
p
#u

q
. Likewise, the

unstable regions of higher than second order which exist near c"(u
p
#u

q
)/m

(m"3, 4, 5,2) are much narrower than the "rst and second order regions. It is
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practically impossible for the dimensionless frequency parameter to belong to the
narrow unstable regions of the higher orders. Furthermore, it is well known that
unstable regions retreat from the horizontal axis if damping exists (see reference
[27]). Therefore, stability diagrams considering higher than second order need not
be obtained. Note that even the unstable region of the second order near
c"(u

1
#u

3
)/2 looks like a line. The unstable region of the second order near

c"u
1
, however, merges with the "rst order unstable region near c"2u

1
, and

changes the original "rst order unstable region signi"cantly.
In Figure 4, several points are marked in the dimensionless parameter plane,

where solid lines represent the transition curves of Figure 3 and dotted lines
represent those of Figure 2. For the points, equations of motion are solved by using
direct numerical integration Ten mode functions are used to generate the sti!ness
matrix elements K

km
in equation (36). The initial displacement and velocity of the

free end of the cantilever beam is given as 0)01 and 0 respectively. Figures 5(a)}5(c)
represent the simulation results of the points A, B, and C respectively. As shown in
Figure 4, the points A and B belong to the unstable region, and Figures 5(a) and
5(b) show unstable dynamic responses accordingly. Note that the point A, if the
results of the "rst order multiple scale method were used, might be presumed to
belong to the stable region. The point C belongs to the stable region, and Figure
5(c) shows the corresponding stable dynamic response. In contrast to the point A,
the point C might be presumed to belong to the unstable region if the results of the
"rst order multiple scale method were used.

The co-ordinates of the point D in the plane of Figure 4 are (4)6, 0)5). Even
though the point D seems to be located on the transition curve, it actually belongs
to the stable region. Figure 6(a) shows the corresponding stable dynamic response.
Figure 4. Points selected from the stability diagram for direct numerical integration.



Figure 5. Numerical integration results for points A, B, C. (a) Point A with the co-ordinates of
(0)2, 0)3). (b) Point B with the co-ordinates of (0)75, 0)3). (c) Point C with the co-ordinates of (1)7, 0)5).
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The unstable region is so narrow around the point D that one should increase the
number of digits of co-ordinates to locate an unstable point. The co-ordinates of
(4)6369, 0)5) is the example of unstable point, and the corresponding results are
shown in Figure 6(b). Figure 6(b) seems to show a stable dynamic response.



Figure 6. Numerical integration results for point D and near point D. (a) Point D with the
co-ordinates of (4)6, 0)5). (b) Near point D with the co-ordinates of (4)6369, 0)5). (c) Near point D with
long integration time.
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Actually, the amplitude increases so slowly that one can hardly observe the
diverging result unless he increases the simulation time su$ciently. Figure 6(c)
shows the unstable dynamic response. However, such an unstable response would
not occur in real world since even slight damping can stabilize the response.



Figure 7. Numerical integration results for points E, F, G. (a) Point E with the co-ordinates of
(2)6334, 0)2). (b) Point F with the co-ordinates of (8)2737, 0)2). (c) Point G with the co-ordinates of
(4)1369, 0)2).
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The co-ordinates of point E, F, and G shown in Figure 4 are (2)6334, 0)2),
(8)2737, 0)2) and (4)1369, 0)2) respectively. The x-coordinates of point E, F, and
G are equal to u

2
!u

1
, u

3
!u

1
, and (u

3
!u

1
)/2. In the previous section, it was

mentioned that these points have nothing to do with unstable responses in case of
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axially oscillating beams. Figures 7(a)}7(c) exhibit the simulation results of points
E, F, and G respectively. These results clearly con"rm the validity of the conclusion
made in the previous section.

5. CONCLUSION

The equations of motion of axially oscillating cantilever beams are derived by
introducing and approximating a stretch variable instead of the conventional
longitudinal Cartesian deformation variable. The equations include a time varying,
harmonically oscillating sti!ness matrix which results from the axially oscillating
translational motion. Dynamic stability analysis of the system is performed by
employing the multiple scale perturbation method, and the integrity of the stability
diagram obtained from the analysis is veri"ed by direct numerical integrations at
several points in the plane of the stability diagram. The stability diagram shows
that relatively large unstable regions exist neat the "rst bending natural frequency,
twice the "rst bending natural frequency, and twice the second bending natural
frequency. Other unstable regions are too narrow to be considered for actual
designs. This diagram can be usefully referenced for the design of slender cantilever
beam-like structures such as sewing machine needles which undergo axially
oscillating translational motions.
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